منابع مشابه
Optimal Stopping under Ambiguity
We consider optimal stopping problems for ambiguity averse decision makers with multiple priors. In general, backward induction fails. If, however, the class of priors is time–consistent, we establish a generalization of the classical theory of optimal stopping. To this end, we develop first steps of a martingale theory for multiple priors. We define minimax (super)martingales, provide a Doob–M...
متن کاملOptimal Stopping Under Ambiguity In Continuous Time
We develop a theory of optimal stopping problems under ambiguity in continuous time. Using results from (backward) stochastic calculus, we characterize the value function as the smallest (nonlinear) supermartingale dominating the payoff process. For Markovian models, we derive an adjusted Hamilton–Jacobi–Bellman equation involving a nonlinear drift term that stems from the agent’s ambiguity ave...
متن کاملOptimal Stopping under Drift Uncertainty
We study a classical Bayesian statistics problem of sequentially testing the sign of the drift of an arithmetic Brownian motion with the ‘0 − 1’ loss function and a constant cost of observation per unit of time for general prior distributions. The statistical problem is reformulated as an optimal stopping problem with the current conditional probability that the drift is non-negative as the und...
متن کاملOptimal Stopping under Model Uncertainty
Optimal Stopping under Model Uncertainty Ingrid-Mona Zamfirescu The aim of this paper is to extend the theory of optimal stopping to cases in which there is model-uncertainty. This means that we are given a set of possible models in the form of a family P of probability measures, equivalent to a reference probability measure Q on a given measurable space (Ω,F). We are also given a filtration F ...
متن کاملOptimal Stopping under Probability Distortion∗
We formulate an optimal stopping problem where the probability scale is distorted by a general nonlinear function. The problem is inherently time inconsistent due to the Choquet integration involved. We develop a new approach, based on a reformulation of the problem where one optimally chooses the probability distribution or quantile function of the stopped state. An optimal stopping time can t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2006
ISSN: 1556-5068
DOI: 10.2139/ssrn.1013276